Warp Drives Are Starting to Be Taken Seriously

Current research in the field of faster-than-light propulsion

Just How Feasible Is a Warp Drive?
by Matt Williams | Universe Today

It’s hard living in a relativistic Universe, where even the nearest stars are so far away and the speed of light is absolute. It is little wonder then why science fiction franchises routinely employ FTL (Faster-than-Light) as a plot device. Push a button, press a petal, and that fancy drive system – whose workings no one can explain – will send us to another location in space-time.

However, in recent years, the scientific community has become understandably excited and skeptical about claims that a particular concept – the Alcubierre Warp Drive – might actually be feasible. This was the subject of a presentation made at this year’s American Institute of Aeronautics and Astronautics Propulsion and Energy Forum, which took place from August 19th to 22nd in Indianapolis.

This presentation was conducted by Joseph Agnew – an undergraduate engineer and research assistant from the University of Alabama in Huntsville’s Propulsion Research Center (PRC). As part of a session titled “The Future of Nuclear and Breakthrough Propulsion”, Agnew shared the results of a study he conducted titled “An Examination of Warp Theory and Technology to Determine the State of the Art and Feasibility“.

As Agnew explained to a packed house, the theory behind a warp propulsion system is relatively simple. Originally proposed by Mexican physicist Miguel Alcubierre in 1994, this concept for an FTL system is viewed by man as a highly theoretical (but possibly valid) solution to the Einstein field equations, which describe how space, time and energy in our Universe interact.

In layman’s terms, the Alcubierre Drive achieves FTL travel by stretching the fabric of space-time in a wave, causing the space ahead of it to contract while the space behind it expands. In theory, a spacecraft inside this wave would be able to ride this “warp bubble” and achieve velocities beyond the speed of light. This is what is known as the “Alcubierre Metric”.

Interpreted in the context of General Relativity, the interior of this warp bubble would constitute the inertial reference frame for anything inside it. By the same token, such bubbles can appear in a previously flat region of spacetime and exceed the speed of light. Since the ship is not moving through space-time (but moving space-time itself), conventional relativistic effects (like time dilation) would not apply.

Read More at Universe Today

This entry was posted in Space Exploration and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s